
 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4792 402

The Big Data Recovery System for

Hadoop Cluster

V. S. Karwande
1
, Dr. S. S. Lomte

2
, R. A. Auti

3

ME Student, Computer Science and Engineering, EESCOE&T, Aurangabad, India
1

Professor, Computer Science and Engineering, EESCOE&T, Aurangabad, India
2

Assistant Professor, Computer Science and Engineering, EESCOE&T, Aurangabad, India
3

Abstract: Due to brisk growth of Data Storage in Many internet Service Companies, there is always issue of regarding

unstructured data storage which is generated in Terabytes [TB] and Peta bytes [PB]. Hadoop is always deal with the

large amount of data Volume. Therefore increase reliability and availability should be maintained. To gain the high

availability characteristic of the Hadoop and to improve failure Recovery as early as possible or failure should be

avoided. The failure of the HDFS, Name node and Master Node affects the performance of the Hadoop cluster. To

overcome this problem, we proposed a system which will select new recovery namenode with less amount of time

which will replicate data from namenode. In this paper, we analyze behaviour of the namenode with respect to its

failure and recovery from failure.

Keywords: Cloud Computing, Fault Tolerance, Hadoop, HDFS, Recovery.

I. INTRODUCTION

Cloud computing provides dynamically scalable and often

virtualized resources as a services over the Internet [1].

Cloud computing has become significant technology trend

in industry and in academic as well. Cloud computing is a

paradigm that focuses on sharing data and computations

over a scalable network of nodes. Hadoop is an open

source java framework, workhorse for the cloud

computing. Large data volume can be operated by Hadoop

with hadoop distributed file system and map reduce.

 Hadoop gives the robust Hadoop Distributed File

System (HDFS) and a Java-based API that allows parallel

computing across several nodes of the cluster [2]. HDFS

architecture is a master-slave architecture. Namenode is

acts as a master and datanodes is act as a slaves.

Namenode manages the file-system metadata. HDFS

stores the file-system as a differ series of the blocks,

random size of each block is by default allocated 64MB

[3]. Blocks are stored on file-system of datanodes. The

mapping between block and datanodes stores in the

namenode's memory. Datanodes sends periodic block

report to namenode. All working datanodes sends

heartbeats to the namenode every 3 seconds. Heartbeat is

an instant message which shows the availability of

datanode as well as namenode [3]. Blocks are replicated

on the several datanodes to retrieve data from failure of

particular datanode. Block replication depends upon the

replication factor which is three [3].The Replica placement

policy generally used to improve HDFS Data availability,

reliability and utilization of Network bandwidth. Suppose

replication factor is three then HDFS Data placement

policy is to put one replica any one random node in rack,

remaining two replica is place in two different rack [3].

 Fig. 1 shows the architecture of Hadoop.

Secondary namenode stores latest image and log files.

Datanode can't possible connecting to secondary

namenode.

Figure1.1. Hadoop Architecture in Multi-node Cluster

[3][14].

Secondary namenode is incapable of updating itself with

the help of datanodes. To reduce the time overhead of

restarting cluster recovery system should be introduced.

The rest of paper is as organized as follows. Section II
provides brief information about HDFS architecture as well
as it analyses the behavior of HDFS under failures. The
proposed scenario of the system is explained in the section
III.

The architecture of proposed scenario is described in
Section IV while Section V is the conclusion of our
proposed scenario.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4792 403

II. RELATED WORK

A. HDFS Architecture
 The HDFS is a distributed file system
architecture basically designed to stores metadata and
application data in different locations. HDFS is built
around the ideas that highly reduce fault-tolerant & the
most efficient data processing pattern is readmany times
but Write only once times paradigm. A dataset is normally
produced, copied or generated from source file system and
then various analysis are performed on that dataset over
time. A typically file size in HDFS is Tera Bytes and Gega
Bytes, Thus HDFS is generated large Data sets. HDFS is
optimized for delivering a high-throughput of data and this
may be at the expense of latency. In HDFS files are written
to by a single writer. There is not providing support for
multiple writers or for perform modifications at arbitrary
offsets in the file.

Figure 2.1: Existing HDFS Architecture in Multi-node

Cluster. [3]

In the Hadoop Cluster is basically using Client

and Server model, all Servers and Clients are connected

with each other and communicate with each other in same

network. Also based on TCP-IP Protocol suite. The

Working Datanodes inHDFS don‟t depend on with full

trust or confidence on data security mechanisms such as

RAID to make the data durable. Instead like Google file

System is replicated on multiple datanode for reliability.

While ensuring database system durability, this strategy

has provided different advantage that data transfer

bandwidth is multiplied and there are many opportunities

for locating computational near the needed data.

The Hadoop Distributed File System (HDFS) is generated

large amount of data sets and to transmit or receive those

data sets at very high bandwidth to end users application

programing. In a Hadoop cluster, many servers host

directly attached storage and execute user application

tasks. By dividing storage of blocks and computation

across many servers, the resource can grow with demand

and remain scalable. The architecture of HDFS is also

using to manage 40 petabytes of enterprise data is

described at Yahoo!

B. Failure in HDFS

HDFS architecture is mainly based on namenode

and datanode, where namenode act as a master while

datanode act as a slave. If datanode fails then namenode

will divert the work of failed datanode to other available

datanode [6][9]. However, the failure of a name node

affects reliability of metadata.

 Figure 2.2: Hadoop Cluster File storage.

To avoid this, HDFS architecture selects a

secondary namenode which will work after the primary

namenode fails. Fig. 1 shows the architecture of Hadoop

with a secondary namenode. Secondary namenode is used

for copying for latest image and logs. Datanode can't

connect to secondary namenode. Secondary namenode is

incapable of updating itself with the help of datanodes. To

reduce the time overhead of restarting cluster recovery

system should be introduced.

III. PROPOSED WORK

Namenode failure affects the performance of

Hadoop cluster. As stated earlier namenode is a pillar of

HDFS architecture and which contains metadata of the

data which are stored on different datanodes. To overcome

failure, we propose recovery system, replicate the entire

namenode on the other datanode called as Recovery

Namenode. Recovery namenode will update all the

information of namenode simultaneously. After failure,

recovery namenode will act as namenode [17][20][19].

Recovery namenode keeps track of corresponding

namenode. After a periodic time interval, recovery

namenodeis updated. Initially all the datanodes sends

Instant Messages to corresponding namenode, when

namenode gets down recovery namenode, itself broadcasts

a message to all datanodes about new namenode. Now,

they have to send Instant message to corresponding

recovery namenode.

The detailed description of the proposed recovery

system is given in the architecture section. It selects new

namenode from available datanodes.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4792 404

IV.ARCHITECTURE

The Behaviour of the HDFS architecture is

shown in the figure 4.1.There are two cases; the first one

gives the architecture of the new HDFS before failure

while the second one gives the architecture of new HDFS

after failure with new Namenode

A. Selection of Recovery Namenode
This section describes appropriate methods for the

efficient selection of recovery nodes such that the
performance of the cluster is not adversely affected. Active
nodes are considered for the selection of recovery
namenode.

Here, „N‟ is the namenode while „ ‟ are
the datanodes. From these datanodes our proposed
recovery system selects one node as a recovery namenode.
As stated, after every three seconds datanode sends a
heartbeat to Namenode to show his availability.

In our scenario, each datanode sends a Instant message

along with its time of generation i.e. . Every datanode

has variant time of Instant message generation such as

 , ,....., for „n‟ nodes. The Instant messages of

each datanode are stored in a log referred Instant message

beat Log along with arrival time of corresponding

datanode in the namenode.

 Now, the time taken to reach namenode from a

datanode is given by

Where, =actual time taken by a Instant message from

datanode to namenode. For every datanode we are

considering first „x‟ readings.

Figure 4.1: Proposed HDFS Architecture in Multi-node

Cluster.

The meantime to reach a namenode from a

datanode is given by

∑

We denote the log of all datanodes with their respective

mean time „ ‟. The sorted log is stored as list called

recovery namenode list. According to this recovery

namenode list, the first node from the list is selected as

recovery namenode.

B. Create Recovery Namenode List

If recovery namenode gets down before failure of

the namenode, the system became unreliable. A recovery

namenode list is created for every recovery namenode, to

increase the reliability of the system.

An algorithm first checks Instant message

response of a datanode. Active datanodes are added in

recovery log list while calculating mean response time.

New recovery namenode is selected from new recovery

namenode list.

C. Communication between Namenode and

Recovery Namenode

 After selection of recovery namenode, the

communication between namenode and recovery

namenode is an important factor. There will be an instant

messaging from namenode to recovery namenode. As the

datanode generates Instant message after three second,

namenode follows the same scenario and will generate an

instant message and send it to the recovery namenode to

announce that it is alive.

Recovery namenode assumes the role of the namenode if it

does not receive a message from the corresponding

namenode in the next 600 seconds, and broadcasts a

message to all the datanodes to announce the role change.

D. Set a Checkpoint

Checkpoint method is widely used in different

recovery models [10][19]. It allows system to recover

from unpredictable fault. The idea behind this system is

the saving and restoration of the system state.

Here, checkpoints are nothing but a time interval which is

periodic. To replicate namenode on recovery namenode,

atime interval is considered. On a certain time interval

checkpoints are created. We have set this time interval to

300 seconds. After every 300s namenode is replicated on

recovery namenode. It means checkpoints are created after

300s. Checkpoints are sets only for namenode. Creating

periodic checkpoints is the way to protect the metadata of

file system.

E. Availability of Namenode

As per the HDFS architecture, namenode does share any

information about his failure, to overcome this problem in

our scenario; namenode will generate an instant message,

sends to recovery namenode after three second to ensure

his availability. After namenode failed to send instant

message up to 600s then namenode will be declared as

dead node.

After that recovery namenode sends a message to all

datanode, to announce the change of status. Recovery

namenode start working from the last checkpoint, before

failure of the namenode.

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4792 405

F. Failure of Recovery Namenode

After the failure of a namenode, the corresponding

recovery node assumes the responsibility of the

namenode.After a recovery namenode becomes a

namenode, a newrecovery namenode is selected by using

same parameters.

According to available datanodes new recovery

namenode list is generated in a similar way. Despite

increased overheads on namenode and datanode, the

scheme provides high availability.

G. Algorithm for Create Recovery Namenode List.

 Figure 4.2:Algorithm for Create Recovery Namenode List.

H. Algorithm for Selection Recovery NameNode.

Figure 4.3: Algorithm for Selection of Recovery
Namenode.

V. RESULT

Hadoop cluster Namenode is working condition after

long time Namenode is remains down, then data recovery

performance is calculated both existing and Recovery

system.

 Figure 5.1: Performance of the System

 The Figure 5.1 graph shown by After 600 second

Existing system is not possible to Data Recovery because

exiting system is needed to restart hadoop cluster

manually and performance result of Recovery system is

after 600 second is also possible to data recovery. Because

the recovery system not need to restart. If instant message

is not received then after 600 second Namenode is

declared as dead. and after 600 second automatically

selected recovery name node as Namenode.

Figure 5.2: Recovery time after failure

For a long time if Namenode remains down, then cluster

should be restarted manually. Then select node as

Namenode and then start respective jobs.

 But in Recovery system, Recovery Namenode

will be the new Namenode if Namenode gets down for a

long time. After some time Namenode gets up then old

Namenode will be continue. But if it is down

permanently, then no need to restart cluster. The Figure

5.2 graph shown compares the time require for the system

to get up after occurrence of failure. Recovery System

requires less time to get up than existing system. The

Recovery system is required to up recovery node time is

48 second. And the Existing system is need to restart

cluster time is 250 second.

VI. CONCLUSION

In cloud computing, unstructured data storage is

popular issue. Hadoop deals with unstructured data

0
20
40
60
80

100
120

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0
8

0
0

9
0

0
1

0
0

0

R
e

co
ve

ry
 in

 %

Time in sec

Existing
System

Recovery
System

0

50

100

150

200

250

300

Existing System Recovery
System

Ti
m

e
 in

 s
e

c.

Recovery Comparison after Failure

To Create Recovery Namenode List

create_recovery_namenode_list()

{

get_all_node_list();

while (list is not empty)

{

if(node_IM_response time == TRUE)

{

node_mean_time=calculate_IM_mean_time(node);

add_node_to_recovery_namenode_list(node,node_mean_time);

goto_next_node;

}

else

{

goto_next_node;

}

}

To Select Recovery Namenode

calculate_IM_mean_time(node)

{

 total_travelling_time=0;

for (from starting time up to a certain time)

{

IM_start_time[]= get_start_time_time();

IM_recieved_time[]= get_received_time();

IM_traveeling_time=IM_recieved_time[]-IM _start_time[];

total_travelling_time=total_travelling_time+

IM_traveeling_time;

 }

node_mean_time= total_travelling_time / (certain_time –

starting_time);

return node_mean_time;

}

quick_sort (recovery_namenode_list with respect to

node_mean_time);

 ISSN (Online) 2278-1021
 ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 7, July 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4792 406

storage. In this paper, we have studied and analysis the

architecture of the Hadoop Distributed File System under

namenode failure. To overcome namenode failure in

HDFS we have proposed an architecture which increases

reliability as well as availability of Hadoop. We also

focused on selection of recovery namenode after failure of

namenode.

REFERENCES
[1] Florin Dinu, T. S. Eugene Ng” Understanding the Effects and

implications of compute Node Related Failure in Hadoop”,

HPDC‟12, Delft, The Netherlands, (June 18-22, 2012.).
[2] Jeffrey Shafer, Scott Rixner, and Alan L. Cox, TheHadoop

Distributed Filesystem:Balancing Portabilityand Performance,

Presentation, ISPASS 2010, March30th 2010.

[3] Dhruba Borthakur.2007. [E-book]. “The Hadoop Distributed File

System: Architecture and Design”. Available through:<http:/

hadoop.apache.org/common/docs/r0.18.0/hdfs _design.pdf>
[4] Ronald Taylor, Pacific Northwest National Laboratory, Richland,

WA, “An overview of the Hadoop/MapReduce/HBase framework
and its current applications in bioinformatics”, Bioinformatics

Open Source Conference.2010doi:10.1186/1471-2105-11-S12-S1.

[5] Konstantin Shvachko, HairongKuang, Sanjay Radia, Robert
Chansler[E-book]. “The Hadoop Distributed File System”2010.

[6] MohommadAsif Khan, Zulfiqar A. Menon, Sajid Khan”Highly

Available Hadoop Namenode Architecture,” International
Conference on Advanced Computer Science Applications and

Technologies, 2012.

[7] AsafCidon, Stephen Rumble, Ryan Stutsman,SachinKatti, John
Ousterhout and MendalRosenblum, “Copysets: Reducing the

Frequency of Data Loss in Cloud Storage” SAN JOSE CA ,2013

USENIX Conference.
[8] FarazFaghri, SobirBazabayev, Mark Overholt, Reza Farivar, Roy

H. Campbell and William H. Sanders, ”Failure Scenario as a

Service (FSaaS) for HadoopCluster”, SDMCMM‟12, Montreal,
Quebec, Canada,December 3-4,2012.

[9] Florin Dinu, T. S. Eugene Ng, “Analysis of Hadoop’s Performance

under Failures”, Rice University.
[10] Jorge-Arnulfo Quiane-Ruiz, Christoph Pinkel, JorgSchad, Jens

Dottrich, RAFT at Work: Speeding-UpMapReduce Applications

under Task and NodeFailures, SIGMOD‟11, Athence, Greece, June
12-16,2011.

[11] Cod-E-mphasis 2012. ” Big data-hadoop HDFS and MapReduce”.

Available at: <http://codemphasis.wordpress.com/2012/09/27/big-
data-hadoop-hdfs-and-mapreduce//.>.

[12] HadoopGettingStartedhttp://docs.hortonworks.com/HDPDocument

s/HDP1/HDP-Win-1.1/bk_getting-
startedguide/content/ch_hdp1_getting_started _ chp3.html.

[13] Brad Hedlund..”Understanding hadoop clusters and the network”

.Available at:<http://bradhedlund.com/2011/09/10/understanding-

hadoop-clusters-and-the-network/>”.2011.

[14] Hadoop in Practice

http://techannotation.wordpress.com/2012/09/10/hadoop-inpractice/
[15] The Building Blocks of Hadoop

http://pramodgampa.blogspot.sg/2013/06/the-buildingblocks-of-

hadoop.html.
[16] Jin San Kong , Min Ja Kim, Wan Yeon Lee, Chuck Yoo and

Young Woong Ko.,"Multi-level Metadata Management Scheme for

Cloud Storage System ", International Journal of Multimedia and
Ubiquitous Engineering Vol.9, No.1 (2014), pp.231-240, 2014.

[17] Arvind K. Bansal, Kotagiri Ramohanarao, Anand Rao, "distributed

multiple agent systems".1997
[18] Kyle Chard and Kris Bubendorfer, " High Performance Resource

Allocation Strategies for Computational Economies " , IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

[19] Bahman Javadi, Derrick Kondo, Jean-Marc Vincent and David P.

Anderson, "Discovering Statistical Models of Availability in Large
Distributed Systems: An Empirical Study of SETI@home"IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED
SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2011.

[20] Samir Jafar, Axel Krings, and Thierry Gautier, " Flexible Rollback

Recovery in Dynamic Heterogeneous Grid Computing " IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, VOL. X, NO. Y, JANUARY 2008.

	A. HDFS Architecture
	B. Failure in HDFS
	A. Selection of Recovery Namenode
	B. Create Recovery Namenode List
	C. Communication between Namenode and Recovery Namenode
	As per the HDFS architecture, namenode does share any information about his failure, to overcome this problem in our scenario; namenode will generate an instant message, sends to recovery namenode after three second to ensure his availability. After n...
	After that recovery namenode sends a message to all datanode, to announce the change of status. Recovery namenode start working from the last checkpoint, before failure of the namenode.

	F. Failure of Recovery Namenode
	REFERENCES

